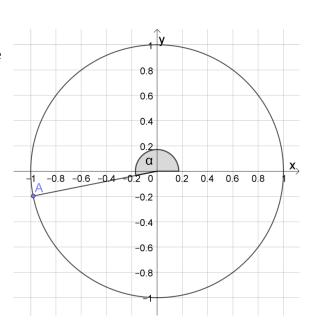

Trigonometrie mit Einheitskreis und Winkelfunktion -Übungen


- 1) a) Berechnen die die Größe des Winkels α (mit Hilfe eines rechtwinkeligen Dreiecks)
 - b) Zeichnen Sie einen Winkel ein, der denselben Sinuswert hat wie α und geben Sie die Größe des Winkels an
 - c) Zeichnen Sie einen Winkel ein, der denselben Kosinuswert hat wie α und geben Sie die Größe des Winkels an

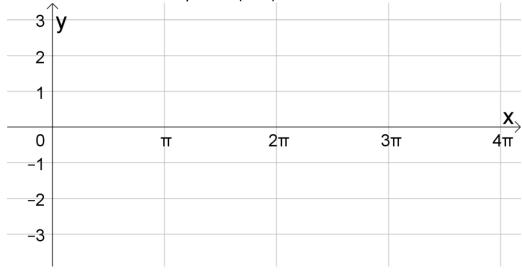
- 2) a) Berechnen die die Größe des Winkels α (mit Hilfe eines rechtwinkeligen Dreiecks)
 - b) Zeichnen Sie einen Winkel ein, der denselben Sinuswert hat wie α und geben Sie die Größe des Winkels an
 - c) Zeichnen Sie einen Winkel ein, der denselben Kosinuswert hat wie α und geben Sie die Größe des Winkels an

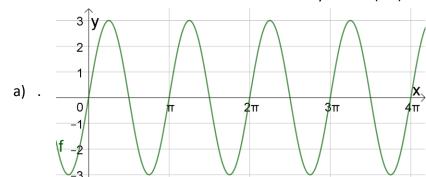
- 3) a) Berechnen die die Größe des Winkels α (mit Hilfe eines rechtwinkeligen Dreiecks)
 - b) Zeichnen Sie einen Winkel ein, der denselben Sinuswert hat wie α und geben Sie die Größe des Winkels an
 - c) Zeichnen Sie einen Winkel ein, der denselben Kosinuswert hat wie α und geben Sie die Größe des Winkels an

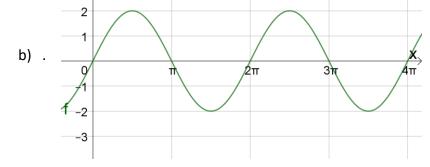
- 4) Lösen Sie folgende Gleichung im Intervall [0°; 360°[
 - a) $sin(\alpha) = 0.7$
- b) $cos(\alpha) = -0.3$
- c) $\sin(\alpha) = -0.5$
- d) $cos(\alpha) = 0.2$

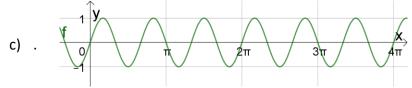
- e) $\sin(\alpha) = -0.8$
- f) $cos(\alpha) = 0.4$
- g) $\sin(\alpha) = 0.9$
- h) $\cos(\alpha) = -0.866$

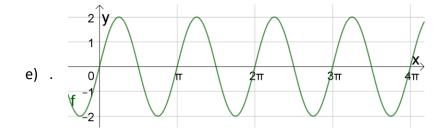
5) Zeichnen Sie die Funktion y = sin(x)

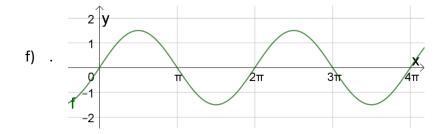

6) Zeichnen Sie die Funktion $y = 2 \cdot \sin(x)$

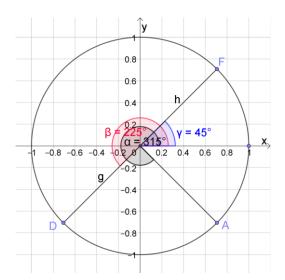

7) Zeichnen Sie die Funktion $y = sin(2 \cdot x)$




8) Zeichnen Sie die Funktion $y = 3 \cdot \sin(\frac{1}{2} \cdot x)$


9) Geben Sie die Parameter a und b der Funktion $y = a \cdot \sin(b \cdot x)$ an

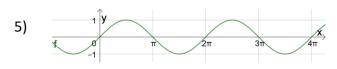




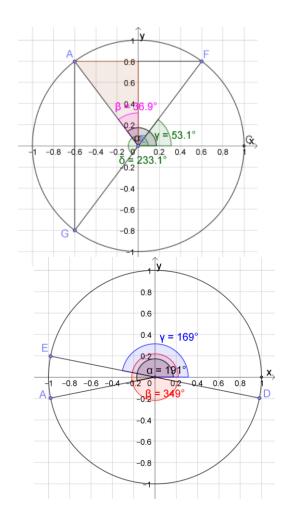
Lösungen:

- 1) a) $\sin(\beta) = 0.6:1 \implies x = \sin^{-1}(0.6) = 36.9^{\circ}$ $\implies \alpha = 36.9^{\circ} + 90^{\circ} = 126.9^{\circ}$
 - b) Winkel $\gamma = 53,1^{\circ}$
 - c) Winkel δ = 233,1°

b) Winkel
$$\beta = 225^{\circ}$$

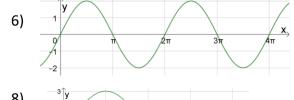

c) Winkel $\gamma = 45^{\circ}$

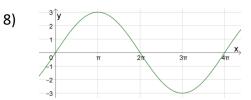
4) a)
$$\alpha = 44.4^{\circ}$$
, $\beta = 180^{\circ} - \alpha = 135.6^{\circ}$


c)
$$\alpha = 330^{\circ}$$
, $\beta = 180^{\circ} - \alpha + 360^{\circ} = 210^{\circ}$

e)
$$\alpha = 306.9^{\circ}$$
, $\beta = 180^{\circ} - \alpha +360^{\circ} = 233.1^{\circ}$

g)
$$\alpha = 64.2^{\circ}$$
, $\beta = 180^{\circ} - \alpha = 115.8^{\circ}$


- 3) a) Winkel $\alpha = 315^{\circ}$
 - b) Winkel $\beta = 315^{\circ}$
 - c) Winkel $\gamma = 45^{\circ}$


b)
$$\alpha = 107.5^{\circ}$$
, $\beta = 360^{\circ} - \alpha = 252.5^{\circ}$

d)
$$\alpha = 78.5^{\circ}$$
, $\beta = 360^{\circ} - \alpha = 281.5^{\circ}$

f)
$$\alpha = 66.4^{\circ}$$
, $\beta = 360^{\circ} - \alpha = 293.6^{\circ}$

h)
$$\alpha = 150^{\circ}$$
, $\beta = 360^{\circ} - \alpha = 210^{\circ}$

.9) a)
$$y = 3 \cdot \sin(2x)$$
 b) $y = 2 \cdot \sin(x)$

d)
$$y = \sin(\frac{1}{2}x)$$
 e) $y = 2 \cdot \sin(2x)$

c)
$$y = \sin(3x)$$

f)
$$y = 1.5 \cdot \sin(\frac{1}{2}x)$$